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A B S T R A C T   

Spatially exponential distributions of material properties are ubiquitous in many natural and engineered systems, 
from the vertical distribution of the atmosphere to acoustic horns and anti-reflective coatings. These media 
seamlessly interface different impedances, enhancing wave transmission and reducing internal reflections. This 
work advances traditional transfer matrix theory by integrating analytical solutions for acoustic exponential 
materials, which possess exponential density and/or bulk modulus, offering a more accurate predictive tool and 
revealing the physical mechanism of broadband anti-reflection for sound propagation in such non-uniform 
materials. Leveraging this method, we designed an acoustic dipole array that effectively mimics exponential 
mass distribution. Through experiments with precisely engineered micro-perforated plates, we demonstrate an 
ultra-low reflection rate of about 0.86% across a wide frequency range from 420 Hz to 10,000 Hz. Our modified 
transfer matrix approach underpins the design of exponential materials, and our layering strategy for stacking 
acoustic dipoles suggests a pathway to more functional gradient acoustic metamaterials.   

1. Introduction 

In the presence of a gravitational field, matter density often adopts 
an exponential gradient distribution, as exemplified by the atmospheric 
density variation with altitude [1,2] or the gradation observed in ground 
soil [3,4] and marine sediments [5,6]. Remarkably, such media, despite 
their inhomogeneity, allow sound waves to propagate without reflective 
energy loss. This unique characteristic facilitates their use as interme
diary layers to minimize reflection losses between media of different 
impedances, with the acoustic horn being a classic example. The genesis 
of using graded materials to mitigate interface reflections dates back to 
the seminal works of Lord Rayleigh [7] and Fraunhofer [8] in the 19th 
century. Since then, gradient materials have found extensive applica
tions across optical and acoustic systems [9,10], including optical fibers 
[11], light-emitting diodes [12], lenses [13,14], and absorbers [15,16]. 
Unlike antireflection techniques reliant on Fabry-Pérot resonances [17], 
gradient materials offer the significant advantage of broadband opera
tion, an attribute crucial for applications in solar cells [18,19], disor
dered media [20,21], aberrating layer [22,23], and cloaking devices 
[24]. 

Two prevalent mathematical approaches are employed to model 
gradient media: the small reflection theory [17,26] and the transfer 
matrix method [17,27]. The small reflection theory offers a general 
solution for gradient materials, predicated on the assumption of weak 
reflection and is particularly useful for simulating multisection binomial 
and Chebyshev transformers [28,29] in TEM transmission lines [17,26] 
under the approximation of an almost constant refractive index. How
ever, this theory falters when faced with the substantial refractive index 
variations typical of exponential materials (EMs). On the other hand, the 
transfer matrix method, utilizing a discretization strategy [30], is 
theoretically applicable to any gradient medium. Yet, its accuracy is 
compromised in media with large property gradients, necessitating a 
finer discretization meshes and increased computational resources to 
minimize cumulative numerical errors [31]. Consequently, the devel
opment of more efficient numerical techniques for EMs is imperative for 
the advanced design and optimization in practical applications. 

In this study, we innovate upon the classical transmission matrix 
method for uniform media by incorporating a plane wave eigen-solution 
specific to EMs. This refinement allows for a substantial reduction in the 
number of discrete meshes necessary for accurate simulations, thereby 

* Corresponding author. 
** Corresponding author. 

E-mail addresses: min@metacoust.com (M. Yang), nicxfang@hku.hk (N. Fang).  

Contents lists available at ScienceDirect 

Materials Today Physics 

journal homepage: www.journals.elsevier.com/materials-today-physics 

https://doi.org/10.1016/j.mtphys.2024.101421 
Received 5 February 2024; Received in revised form 21 March 2024; Accepted 30 March 2024   

mailto:min@metacoust.com
mailto:nicxfang@hku.hk
www.sciencedirect.com/science/journal/25425293
https://www.journals.elsevier.com/materials-today-physics
https://doi.org/10.1016/j.mtphys.2024.101421
https://doi.org/10.1016/j.mtphys.2024.101421
https://doi.org/10.1016/j.mtphys.2024.101421


Materials Today Physics 44 (2024) 101421

2

decreasing computational demands while enhancing precision [32,33]. 
The resulting method enables a more efficacious characterisation of 
material response properties, which is instrumental in optimising pa
rameters and improving design processes for applications such as anti
reflection layers. Demonstrating the practical utility of our approach, we 
engineered a series of broadband acoustic dipoles using a sequence of 
non-resonant micro-perforated plates. These meta-layers were meticu
lously designed to yield a gradient in effective mass density that adheres 
to an exponential spatial distribution. Here, the prefix “meta” borrowed 
from metamaterials [32,33] emphasises the effective properties were 
from designed structures rather than chemical composition. Experi
mental validation confirms the theoretical model, with the structure 
exhibiting exceptional broadband reflection suppression across an 
extensive frequency spectrum (an average reflectivity of 0.86% and less 
than 10% from 420 to 10,000 Hz), when backed by a rigid surface. These 
results highlight the considerable potential to advance the application of 
EMs in fields like antireflection technology. 

2. Exponential medium and its general solution 

Sound propagates as a spread of density variation within a medium, a 
process characterized by localized interactions rather than long-range 
effects. Therefore, the homogeneity in the medium is not expected to 
affect the local momentum equation or alter the constitutive properties 
at a given point: 
{

∂v/∂t +∇p/ρ(x) = 0,
∂p
/

∂t + ρ(x)c(x)2
∇⋅v = 0. (1)  

Here, p is the pressure modulation by sound, v is the particle velocity, ρ 
is the local density and c =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(∂p/∂ρ)S

√
is the local sound speed in adia

batic processes. By eliminating v, Eq. (1) gives the wave equation 
respect to p for the non-uniform medium 

ρ(x)∇⋅
[

1
ρ(x)∇p(x)

]

−
1

c(x)2
∂2

∂t2 p(x) = 0. (2)  

The problem reduces to one-dimensional if both ρ and c change expo
nentially along a single axis, x, and remain constant along the other two, 
{

ρ(x) = ρ0exp(μ1x),
c(x) = c0exp(− μx/2), (3)  

provided that the sound propagation under consideration is in the di
rection of the exponential variation. Where, ρ0 and c0 are real-valued 
reference material constant defined at x = 0. Also, we display the cor
responding bulk modulus as 

K(x) = ρc2 = K0exp(− μ2x), (4)  

where μ2 = μ − μ1 followed from Eq. (1). The schematic diagram illus
trating the exponential material properties is depicted in Figs. (1a) and 
(1b). To find the solution to Eq. (2), we introduce variable trans
formations for monochromatic sound1 with the angular frequency ω, 

x↦ξ ≡
2ω
μc0

exp(μx / 2) ​ and ​ p↦Φ ≡ ξ− α1 p, (5)  

where α1 = μ1/μ. So, Eq. (2) yields a Bessel equation: 

ξ2∂2Φ
∂ξ2 + ξ

∂Φ
∂ξ

+
[
ξ2 − α1

2]Φ = 0. (6)  

The relevant general solutions for sound pressure can be expressed by 
Hankel functions of the first and second kinds (referring to Supple

mentary Materials, Section S1 for details): 

p(x, t) = e
μ1 x

2

∫ ∞

0

{
C1(ω)H(1)

α1
[ξ(ω)] + C2(ω)H(2)

α1
[ξ(ω)]

}
e− iωtdω. (7)  

Here, C1 and C2 are determined by the initial condition of sound pres

sure’s distribution at t = 0, ensuring that the requirement p(x,0) = e
μ1x
2
∫

[
C1H(1)

α1
(ξ) + C2H(2)

α1
(ξ)
]
dω is satisfied. 

As an example, assuming the initial state comprises a Gaussian wave 
packet, p(x, 0) = exp(− (ax)2), the subsequent evolution of sound wave 
can be observed in Fig. (1d) (numerical calculation steps are available in 
Supplementary Materials, Section S2). The wave traveling to the right is 
represented by the Hankel function H(1)

α1
(ξ) in Eq. (7) and manifests as 

̅̅̅̅̅̅̅̅̅̅
2/πξ

√
ei(ξ− α1π

2 − π
4) in the far field, whose profiles we have plotted in 

Figs. (1b) and (1c). Conversely, the wave moving to the left is denoted by 
H(2)

α1
(ξ) in Eq. (7) and exhibits behaviour 

̅̅̅̅̅̅̅̅̅̅
2/πξ

√
e− i(ξ− α1π

2 − π
4) at a significant 

distance from the source. The interpretation of standing and traveling 
plane waves is justified by the extremum of power flow (see a rigorous 
proof in Supplementary Materials, Section S3). Remarkably, despite the 
medium’s non-uniformity, no reflections are observed for either of the 
propagating pulses, a distinctive characteristic of an EM. 

In Table 1, we listed the plane-wave eigenmodes (in frequency 
domain) with respect to p and v, of both uniform materials and EMs for 
comparison. The detailed derivation is available in Supplementary 
Materials, Section S1. 

3. Classification of exponential materials 

To lay the groundwork for advancing numerical methods applicable 
to exponential materials (EMs), it is instructive to first categorize and 
examine general solutions through the physics of symmetry. Eq. (1) 
bears resemblance to the electric-magnetic duality (or Montonen–Olive 
duality) [27] found in Maxwell’s equations; by interchanging p ↔ v and 
ρ ↔ K− 1, we observe that the equation retains its form, thereby exhib
iting duality symmetry. This symmetry permits an interchange of p and v 
by simply swapping μ1 with μ2 and vice versa. Moreover, implementing 
a parity transformation x ↔ − x is also mathematically tantamount to 
switching μ1 ↔ − μ1 and μ2 ↔ − μ2. 

Nevertheless, existing references tend to name their materials using 
either gradient impedance [34] or gradient index [35], while ignoring 
the other. Here, we show the necessity of considering both material 
properties to obtain a complete classification and to cover various EMs, 
as seen in the parameter space for classifying EMs. In Fig. (2), we define 
the corresponding characteristic impedance Z and refraction index n as 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Z(x) = Z0exp
[
(μ1 − μ2)x

2

]

n(x) = n0exp
[
(μ1 + μ2)x

2

] , (8)  

where Z0 =
̅̅̅̅̅̅̅̅̅̅
ρ0K0

√
and n0 = 1. Visualizing μ1 as the horizontal axis and 

μ2 as the vertical axis, we can represent all potential parameters of EMs 
on a two-dimensional plane. Given the symmetries described, the solu
tion space of Eq. (2) can be effectively narrowed down to the shaded 
region A in Fig. (2), characterized by μ1 − μ2 > 0 and μ1 + μ2 > 0. For the 
purposes of our research, we will confine our analysis to this region 
without compromising generality. Along the boundary where μ1 − μ2 =

0, the material exhibits a constant acoustic impedance, Z = ρ0c0 exp[(μ1 
− μ2)x/2], while along the boundary where μ1 + μ2 = 0, the speed of 
sound within the material remains invariant, which is the case of sound 
in a horn characterized by Webster equation [36]. The point where μ1 =

μ2 = 0 corresponds to a uniform medium, as depicted at the origin in 
Fig. (2). 

1 In this context, we assume a harmonic dependence of p as exp(− iωt), and we 
globally adopt ∂/∂t → − iωt. 
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4. Modified transfer matrix method 

4.1. Model setup 

As shown in Fig. (3a), the basic model setup involves considering two 
uniform materials with distinct material properties. The EM is 
embedded in between as an impedance transformer with thickness L, 
and the material properties are ensured to be continuously connected at 

the interfaces. In this way, the density and bulk modulus are defined as 

ρ(x) =

⎧
⎨

⎩

ρ0 x ≤ 0
ρ0exp(μ1x) 0 < x < L
ρ0exp(μ1L) x ≥ L

, (9)  

and 

Fig. 1. (a) The profiles of ρ(x) and K(x) for an ideal and infinitely long EM in the reduce region in Figure (2). Here we take the values when μ1 = − 2μ2/3 for example. 
(b–c) The calculated eigenmodes,i.e., pressure p and velocity v, in this EM at dimensionless frequency ξ0 = f/f0 = 4/5. By plotting the results in Table 1, the solid lines 
are real parts of exact solutions, while the dashed lines are the absolute values of asymptotic solutions. (d) The propagation of a Gaussian pulse in exponential 
materials with no reflection is given by Eq. (7), as shown in the numerical results. 

Table 1 
Eigenmodes (p and v) of uniform and exponential materials (e− iωt omitted). The displayed analytical solutions for EMs are the generalized version of those in uniform 
materials. In uniform materials, the wavenumber is defined as k0 = ω/c0. At the high frequency limit when ξ ≫ 1, the asymptotic eigenmodes [25] in EMs share the 
similar forms with plane-wave solution in uniform materials. However, the amplitude of p (or v) is modulated by e(μ1 − μ2)x/4 (or e− (μ1 − μ2)x/4). The velocity fields are 
obtained by substituting p into the first line of Eq. (1) with the additionally defined α2 = 1 − α1.  

Properties Uniform Materials Exponential materials (EMs) 

ρ = ρ0, K=K0 ρ = ρ0eμ1x,K = K0e− μ2x 

Solution type Exact Exact Asymptotic (ξ ≫ 1) 

Pressure ​ p
(Standing ​ wave)

[
sin(k0x)
cos(k0x)

]

e
μ1x
2
[

Jα1 (ξ)
Yα1 (ξ)

]
( 2

πξ0

)1
2e

(μ1 − μ2)x
4

⎡

⎣
sin
(

ξ − α1
π
2
−

π
4

)

cos
(

ξ − α1
π
2
−

π
4

)

⎤

⎦

Velocity ​ v
(Standing ​ wave)

− i
Z0

[
cos(k0x)
− sin(k0x)

]

− ie
μ2x
2

Z0

[
J− α2 (ξ)
Y− α2 (ξ)

]
( 2

πξ0

)1
2 − ie

−
(μ1 − μ2)x

4
Z0

⎡

⎣
sin
(

ξ + α2
π
2
−

π
4

)

cos
(

ξ + α2
π
2
−

π
4

)

⎤

⎦

Pressure ​ p
(Traveling ​ wave)

[
eik0x

e− ik0x

]

e
μ1x
2

⎡

⎣
H(1)

α1
(ξ)

H(2)
α1

(ξ)

⎤

⎦ ( 2
πξ0

)1
2e

(μ1 − μ2)x
4

[
e

i(ξ− α1
π
2
−

π
4

)

e
− i(ξ− α1

π
2
−

π
4

)

]

Velocity ​ v
(Traveling ​ wave)

1
Z0

[
eik0x

− e− ik0x

]

− ie
μ2x
2

Z0

⎡

⎣
H(1)

− α2
(ξ)

H(2)
− α2

(ξ)

⎤

⎦
( 2

πξ0

)1
2 − ie

−
(μ1 − μ2)x

4
Z0

[
e

i(ξ+α2
π
2
−

π
4

)

e
− i(ξ+α2

π
2
−

π
4

)

]
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K(x) =

⎧
⎨

⎩

K0 x ≤ 0
K0exp( − μ2x) 0 < x < L
K0exp( − μ2L) x ≥ L

. (10)  

As an additional constraint, we assume that the impedance contrast is a 
constant for all EMs with different testing α1, which ensures that 

ZL

Z0
= exp

[
(μ1 − μ2)L

2

]

= 7.4, (11)  

which we will use as a demonstration value for all followed numerical 
results. 

4.2. Elements of modified transfer matrix 

Since the analytical solutions obtained earlier in Table 1 are accurate 
and universal, we now establish a modified transfer matrix method 
(MTMM) by taking advantage of the generalized eigenmodes in EMs, to 
predict the scattering parameters. The uniform material on the left (or 
right) side is associated with Port 1 (or Port 2). The ABCD-matrix [17] of 
the 2-port system relates the fields at different ports in following way 
⎛

⎜
⎝

|px=0̅̅̅̅̅
Z0

√

|vx=0
̅̅̅̅̅
Z0

√

⎞

⎟
⎠ =

(
A B
C D

)
⎛

⎜
⎝

|px=L̅̅̅̅̅
ZL

√

|vx=L
̅̅̅̅̅
ZL

√

⎞

⎟
⎠, (12)  

where A, B, C, D are dimensionless matrix elements that follows the 
convention of generalized scattering matrix formalism [17,37]. If we 
apply the incident excitation from left and right sides respectively, the 
linear superposition of p and v can be written as 

⎧
⎪⎪⎨

⎪⎪⎩

(
1 + S11

1 − S11

)

=

(
A B

C D

)(
S21

S21

)

(
S12

− S12

)

=

(
A B

C D

)(
1 + S22

− (1 − S22)

) , (13)  

where Sij are the scattering matrix elements whose absolute values 
squared represents the energy ratio from Port i to Port j. If i = j, |Sii|2 

denotes the reflected energy ratio at Port i. By treating A, B, C, D as the 
known elements, we can attain the scattering matrix 
⎧
⎪⎪⎨

⎪⎪⎩

S11 = (A + B − C − D)/(A + B + C + D)

S12 = 2(AD − BC)/(A + B + C + D)

S21 = 2/(A + B + C + D)

S22 = (− A + B − C + D)/(A + B + C + D)

, (14)  

where the analytical forms of A, B, C, D elements of MTMM are given in 
Table 2, whose derivation has been placed in Supplementary Materials, 
Section S4. 

4.3. S-matrix analysis 

Because our system is time-invariant, linear and with scalar material 
properties, the reciprocity holds [37], which ensures that S12=S21 [thus 
AD − BC = 1, according to Eq. (14)]. Therefore, the reciprocity can 
guarantee symmetrical transmission, i.e., 

|S12|
2
= |S21|

2
. (15)  

Since the embedded EM is lossless, i.e., Im(ρ) = 0, Im(K) = 0, the ab
sorption inside the EM should be zero, thus |S12|2 + |S11|2 = 1 or |S21|2 

+ |S22|2 = 1. With the consideration of Eq. (15), we can conclude that 

|S11|
2
= |S22|

2
, (16)  

although S11 ∕= S22 due to the phase difference. It should be noted that 
Eq. (15) holds for all frequencies regardless of the types of the EM, while 
Eq. (16) is valid only when the EM is lossless (the case we focus on here). 
Symmetrical reflected energy allows us to focus on the case where the 
incident excitation is from only Port 1, without losing the generality. 

4.4. Our model vs textbook theories 

To compare the proposed MTMM with the two representative the
ories in textbooks, we treat the reflection spectra obtained from finite 
element method (FEM) model as the reference values. The commercial 
software, COMSOL Multiphysics, was utilized to implement FEM 
calculation throughout the paper. To ensure the correctness of FEM, the 
adopted mesh size was sufficiently small compared to the wavelength λ. 
The related results are displayed by the solid lines in Figs. (3b) and (3c), 
for EMs with different α1. Remarkably, the corresponding data given by 
the first line of Eq. (14) [see MTMM results in Fig. (3c)] match the 
reference values for all α1 at all frequencies, which shows the generality 
and accuracy of our theory. 

For predicting reflection from impedance-varying materials, small 
reflection theory (SRT) is a widely-used lightweight method [17]. Its 
assumptions are that the reflection at each layer is a small quantity, and 
that wave speed c0 (or n0) is constant, i.e., α1 = ∞ in our definition. So, 
analytical solutions may be obtained for special impedance distribution 
Z(x). For example, for the EMs we considered, the overall reflection 
coefficient has the following form [17,26]. 

S11 =

∫ L

0

e2ik0x

2
d
dx

ln
(

Z(x)
Z0

)

dx = ln
(

ZL

Z0

)
eik0Lsin(k0L)

2k0L
, (17)  

where k0 = ω/c0. As shown by the green dashed lines in Figs. (3b) and 
(3c), the data by SRT coincide with reference values only for α1 → ∞ and 

Fig. 2. The classification of EMs by the parameter space of μ1 and μ2, which are 
the measure of non-uniformity of exponential density and bulk modulus, 
respectively. In the center, μ1 = μ2 = 0, which represents the space for uniform 
materials. We define EMs in other spaces, i.e., the farther away from the origin 
the greater the non-uniformity. By leveraging the duality, we have the 
following problems equivalent: A ⇔ C and B ⇔ D. Moreover, with parity 
symmetry, we have A ⇔ D and B ⇔ C. Therefore, all possibilities of the solutions 
can be contained in the reduced region A. 
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when the reflection is lower than 0.05. This is consistent with the pre
scribed assumptions of SRT. 

The second textbook method is traditional transfer matrix method 
(TMM), which requires piecewise discretization of the investigated 
materials. To yield S11 coefficient, TMM also follows the similar pro
cedure of obtaining ABCD-matrix, using the same formula, i.e., Eq. (14). 
However, the overall ABCD-matrix is generated from the one-by-one 
multiplication of N sub-matrices. See the mathematical details of TMM 
in Supplementary Materials, Section S4. As shown in Fig. (3b), when N 
= 6, reflection spectra by TMM are accurate at low frequencies (ωL/c0 <

4), while for high frequencies (ωL/c0 > 4), TMM suffers from the 

discretization approximation. If N = 50, the error becomes low enough 
but the computation time is surged. Compared with SRT, TMM is general 
for all α1 but the accuracy is not ensured if N is not sufficiently large. 

From this perspective, SRT and TMM are neither general nor accu
rate. TMM can be general with cost of iteration times N. In Fig. (3d), we 
compare the absolute errors by TMM and MTMM in our case of EMs, 
respectively. Absolute errors denotes the frequency-averaged difference 
between the target theory and FEM. So, MTMM outperforms TMM 
because only one-step calculation is enough and the error of MTMM is 
smaller than that of TMM with even N = 50. 

By equating left-side terms of Eq. (12) and the first line of Eq. (13), 

Fig. 3. (a) The impedance transformer setup. The left and right sides are uniform materials with distinct material properties, which are connected with an EM. The 
combination of (μ1, μ2) can be arbitrary, reflecting the universality of our model. (b) The reflection |S11|2 predicted by traditional piece TMM (N = 6), compared with 
that by FEM as reference value. (c) The reflection |S11|2 predicted by MTMM and FEM. The green dashed lines in (b) and (c) are the same data given by SRT. (d) The 
absolute error of TMM and MTMM, plotted as function of iteration number N. The coefficient α1 is adjusted for checking the generality and accuracy of different 
models. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Table 2 
The theories for modeling EMs. For modified transfer matrix method (MTMM), it is defined that ξ0 = ξ|x = 0 and ξL = ξ|x = L. For small reflection theory (SRT), there is no 
matrix element involved. For traditional transfer matrix method (TMM), the ABCD-matrix is obtained by multiplying N sub-matrices, with the mesh size of L/N. In the 
nth layer, the wavenumber kn = ω

̅̅̅̅̅̅̅̅̅̅̅̅̅
ρn/Kn

√
and the characteristic impedance Zn =

̅̅̅̅̅̅̅̅̅̅
ρnKn

√
, where ρn = ρ0 exp(μ1nL/N) and Kn = K0 exp(− μ2nL/N).  

Methods ABCD-matrix Reflection (S11) 

Our theory MTMM 

πξ0
2

⎛

⎜
⎜
⎜
⎝

̅̅̅̅̅
ZL

Z0

√

e
μ2L
2 F (α1, − α2, ξ0, ξL) − i

̅̅̅̅̅
Z0

ZL

√

e
μ1L
2 F (α1, α1, ξ0, ξL)

− i
̅̅̅̅̅
ZL

Z0

√

e
μ2L
2 F ( − α2, − α2, ξ0, ξL)

̅̅̅̅̅
Z0

ZL

√

e
μ1L
2 F (α1, − α2, ξL , ξ0)

⎞

⎟
⎟
⎟
⎠

where ​ F (v1, v2, x1, x2) = Jv1 (x1)Yv2 (x2) − Jv2 (x2)Yv1 (x1)

Eq. (14) 

Textbook SRT Not applicable Eq. (17)  
TMM ⎛

⎝

1̅̅
̅̅̅

Z0
√ 0

0
̅̅̅̅̅
Z0

√

⎞

⎠
∏N

n=1

⎛

⎜
⎝

cos(kn
L
N
) − iZnsin(kn

L
N
)

−
i

Zn
sin(kn

L
N
) cos(kn

L
N
)

⎞

⎟
⎠

⎛

⎜
⎝

̅̅̅̅̅
ZL

√
0

0
1̅̅
̅̅̅

ZL
√

⎞

⎟
⎠

Eq. (14)  
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the reflection can be related with the specific impedance Zs 

S11 =
Zs − Z0

Zs + Z0
, (18)  

where Zs = (p/v)|x = 0. The mechanism-level understanding impedance 
matching and anti-reflection performance of EMs in Fig. (3) requires 
analytical analysis on Zs, which will be addressed next. 

5. Physical mechanism of broadband impedance matching 

From Fig. (3c), it can be seen that in all cases, low-frequency 
reflection is still significant, while from intermediate to high fre
quency bands, the reflection tends to disappear, indicating broadband 
impedance matching. It is necessary to first understand how impedance 
behaves when there is a low-frequency mismatch in order to compre
hend how it changes as the frequency increases. 

5.1. Low frequency behavior 

If ωL/c0 → 0, the ABCD-matrix of MTMM in Table 2 becomes a di

agonal matrix 
( ̅̅̅̅̅̅̅̅̅̅̅̅̅

ZL/Z0
√

0
0

̅̅̅̅̅̅̅̅̅̅̅̅̅
Z0/ZL

√

)

, which has been proved in the 

Supplementary Materials, Section S4. According to Eq. (12), we 
conclude 

limω→0Zs = ZL, (19)  

thus yielding the reflection S11 = (ZL − Z0)/(ZL + Z0) = 0.58. So, we can 
interpret it as the ‘bypassing’ effect in EMs with our analytical model. 
From the perspective of impedance transfer, this means that the 
impedance at x = L is transmitted unchanged to x = 0. In other words, 
the long wavelength wave can ignore impedance transition, and the 
reflection coefficient approaches the case without an anti-reflection 
layer, i.e., step impedance change. 

5.2. High frequency behavior 

As shown in Fig. (3c), if ωL/c0 → ∞, we observe a near-zero reflection 
in all EMs. Now we explain why. The ABCD-matrix of MTMM in Table 2 
at the high frequency limit (ω → ∞) has the asymptotic values A = D = 1 
and B = C = 0 (i.e. identity matrix). The related proof can also be found 
in the Supplementary Materials, Section S4. By adopting these values 
into Eq. (12), we have 

limω→∞Zs = Z0
(p/v)|x=L

ZL
= Z0. (20)  

The last equal in Eq. (20) is because the continuity impedance ensured 
by Eq. (11), i.e., (p/v)|x=L = Z(L) = Z0e(μ1 − μ2)/2. This means that any end 
impedance will be transformed into the impedance that matches Port 1, 
i.e., analytical evidence of the excellent impedance-matching feature of 
EMs. 

5.3. Intermediate frequency behavior 

For the intermediate frequency range, we can see that impedance 
matching condition of Eq. (20) is still a good approximation. This also 
explains why gradually varying media always have excellent anti- 
reflection properties [10]. At high frequencies, the short wavelength 
makes it difficult to detect the non-uniformity of the material. As shown 
in Fig. (3c), it can be seen that the anti-reflection properties can be 
maintained over a wide frequency range, depending on how small of α1 
can be achieved. For instance, if we define f1 as the threshold at which 
the reflection is below 0.1, then f1 is lower and the anti-reflection effect 
is wider in bandwidth as α1 approaches 1/2. In the following content, we 
will focus on the case where α1 = 1, which is an achievable target in 

airborne acoustics. Furthermore, we will also examine the case with 
lossy material properties and its impact on impedance matching. 

6. Lossless and lossy EMs 

We first consider a lossless EM with α1 = 1 with the following 
settings: 
{

ρ(x) = ρ0eμ1x

K(x) = K0
, (21)  

with Z(L) =
p
v
|x=L = Z0eμ1L/2, (22)  

as shown in Fig. (4a). Here, we set the impedance boundary as Eq. (22), 
following the same definition in Fig. (3a). The product μ1L should be 
determined by Eq. (11), i.e., μ1L = 4. Here, Eq. (22) is regarded as leaky 
backing. 

We already know from Fig. (3d) about the excellent anti-reflection 
properties of such EM, and the same curve is displayed by blue data in 
Fig. (4e). Next, we consider the other lossy EM, with the settings: 
{

ρ(x) = ρ̃0eμ1x

K(x) = K0
, (23)  

with Z(L) =
p
v
|x=L = ∞, (24)  

as shown in Fig. (4b). The proposed MTMM model is actually applicable 
to lossy EMs as well, but it requires complex ̃ρ0, whose dispersion should 
be determined by the concrete structures in real systems. For the sub
wavelength acoustic dipoles based on perforated plates that we will 
realize in the experiments, the dispersive material properties should 
adopt 

ρ̃0 = ρ0χ(ω) = ρ0

(

1 + i
̅̅̅̅
β
ω

√ )

, (25)  

where β is the dissipation factor. The derivation of Eq. (25) is available 
in Supplementary Materials, Section S5. By replacing Eq. (21) by Eq. 
(23), we can derive the explicit form of the reflection of a lossy EM with 
the hard boundary [Eq. (24)] 

S11 =
i ̅̅̅χ√

F

(
1, 0, ξ̃0, ξ̃L

)
− F

(
0, 0, ξ̃0, ξ̃L

)

i ̅̅̅χ√
F

(
1, 0, ξ̃0, ξ̃L

)
+ F

(
0, 0, ξ̃0, ξ̃L

), (26)  

where ξ̃0 = ξ0
̅̅̅χ√ , ξ̃L = ξL

̅̅̅χ√ , and F (v1, v2, x1, x2) follows the same 
definition of Table 2. Since the dissipation is inevitable in real sample, 
our motivation is to consider a lossy EM, whose β can be designed to 
make its reflection close to that of the corresponding lossless EM, with a 
leaky backing. It turns out that if β = 630 rad/s, the approximation is 
observed to be valid when ωL/c0 > 0.4 [see Fig. (4e)]. It is displayed in 
Figs. (4c) and (4d) that the impedance spectra are also similar in the two 
cases, except the low frequency behaviors. The above results indicate 
that a finite lossy EM can mimic the reflection behavior of an ideal 
lossless EM with leaky backing boundary, laying the foundation for our 
experimental realization of anti-reflection meta-layer. It should be 
emphasized, however, that the suitable dissipation β of a lossy EM 
actually depends on the impedance contrast, given by Eq. (11). 

7. Experimental realization of anti-reflection meta-layer 

7.1. Acoustic dipoles with tunable density 

To realize the lossy EM in Fig. (4b) with excellent anti-reflection 
property, we seek real structures to realize these predetermined den
sity properties. Therefore, the candidate we found is the perforated plate 
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[38], which is a type of acoustic dipole in airborne acoustic systems. The 
geometric parameters of a perforated plate include its thickness τ, hole 
diameter d, and the spacing a between holes. We also specify that the 
unit of the acoustic dipole is composed of air cavity with a length of ℓ. In 
addition, the porosity is the perforated area ratio φ = πd2/ (2

̅̅̅
3

√
a2) for 

hexagonal pore distribution. According to effective medium theory 
(EMT) [39,40], in the non-resonant band, the effective bulk modulus of 
a perforated plate is the same as that of air,2 i.e., Keff ≅ K0 due to the 
pure dipole nature. Here, the non-resonant band refers to the frequency 
range where ℓ ≪ λ and the relevant effective properties are approxi
mately non-dispersive. By contrast, the effective density is what we can 
regulate, which writes 

ρeff =
ρ0

ℓ

[

ℓ − τ + τ + δτ
φ

(

1 + i
̅̅̅̅
β
ω

√ )]

, (27)  

where the end correction δτ = 0.85 dF(φ) and the Fok function 

F(φ) = 1 − 1.41φ1
2 + 0.34φ3

2 + 0.07φ5
2 − 0.02φ3 + 0.03φ7

2, (28)  

which depicts the interaction between the adjacent pores [41]. The first 
and second terms in Eq. (27) are contributed by air cavity and pore, 
respectively. The thermoviscous dissipation [42] in the pore was taken 
account by β. Here, we adopt β = 8ν/d2 and the kinematic viscosity ν =
1.59 × 10− 5 m2/s. Derivation details of Eq. (27) can be found in Sup
plementary Materials, Section S5. In our case, we obtain d = 0.45 mm by 
solving that β(d) = 630 rad/s. Here, the proper dissipation ensures the 
similarity between the reflection spectra in the lossy and lossless cases in 
Fig. (4). By adjusting φ and ℓ, we can manipulate the effective density 
over a wide range, thus acoustic dipole being tunable. 

7.2. Design scheme 

By utilizing the tunable acoustic dipoles, we can now construct an 
equivalent EM with gradient effective density. Our idea is to stack unit 
cells of different acoustic dipoles to create a meta-layer with a gradually 
varying effective property, in order to experimentally verify the anti- 
reflection effect shown in Fig. (4e). To inversely engineer geometric 
parameters of an array of perforated plates under the constraint of 
exponential density [see the fabricated sample photo in Fig. (5a)], we 
use n to label each perforated plate and related parameters (the total 
number N = 39). For example, the length of the nth unit cell is ℓn, and the 
porosity of the nth perforated plate is φn. Our strategy is to let the real 
part of Eq. (27) to follow exponential dependence 

exp(μ1xn) =
1
ℓn

[

ℓn − τ + τ + δτ(φn)

φn

]

, (29)  

where xn is the coordinate of nth plate and we set τ = 0.7 mm. We set x1 

= 0, x2 = (ℓ1 + ℓ2)/2, xn = (ℓ1 +ℓn)/2 +
∑n− 1

m=2ℓm (n ≥ 3), and the total 
length L = ℓ1/2+

∑N
n=2ℓn. To derive the design of φn, we can assign 

ℓn = ℓ1e− μ1xn/3 and solve ℓ1 by designating the total length L = 0.2 m, 
which can determine μ1 = 20 m− 1 according to Eq. (11). The necessity of 
introducing gradient ℓn lies in the fact that the wavelength will be 
suppressed if the sound speed becomes slower [see Figs. (1b) and (1c)]. 
In this way, the subwavelength condition (ℓn ≪ λ) can be maintained 
broadbandly. By numerically solving Eq. (29) for the roots, we can 
obtain a list of the required values of φn [see the outcome in Fig. (5b)]. 
As for the imaginary part of Eq. (27), if φ ≪ 1 (this is true for most 
plates), we can approximate Eq. (27) as the first line of Eq. (25). Hence, 
we can still use MTMM with the consideration of loss by Eq. (25) to 
model the meta-layer. In summary, in the design scheme, besides the 
plate thickness τ and total length L, all other geometric parameters are 
reverse-engineered rather than obtained through large-scale multi- 
parameter optimization. The detailed geometrical parameters are listed 
in Supplementary Materials, Section S6. As for the length scale relation, 
it should be noted that 1/μ (the exponential decay length) > ln (the unit 

Fig. 4. Lossless and lossy EMs with exponential density (α1 = 1). (a) The setup for a lossless EM backed by a leaky impedance boundary Z(L) = Z0exp
[

μ1L
2

]
. (b) The 

setup for a lossy EM with complex density ̃ρ0eμ1x, backed by hard wall (i.e., Z(L) → ∞). (c–d) The impedance spectra of lossless and lossy EMs in the setup of (a) and 
(b). (e) The reflection spectra of lossless and lossy EMs, given by Eq. (14) and Eq. (26) respectively. The MTMM-predicted data agree well with those by FEM, showing 
the validity of our theory in lossy case. 

2 From now on, ρ0 and K0 denote the density and bulk modulus of air, 
respectively. 
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size) ≫δν =
̅̅̅̅̅̅̅̅̅̅̅
2ν/ω

√
(the boundary layer thickness). 

7.3. Effective density characterization 

We used 3D printing technology to fabricate individual perforated 
plates with predetermined φn (The pore spacing was determined by an =

d[π/(2
̅̅̅
3

√
φn)]

1/2). We performed experimental measurements of the 
effective density for each individual plate before assembling individual 
perforated plates. The specific implementation was based on the four- 
microphone method via impedance tube to measure the reflection 
(S11) and transmission (S21) spectra (with phase information) of a single 
perforated plate at a measured frequency of 1000 Hz. Experimental 
details can be found in Supplementary Materials, Section S7. According 
to Ref. [43], the measured effective density of the nth plate is given by 

ρeff(ω) = i
2Z0

ωℓn

1 + (S11 − S21)

1 − (S11 − S21)
. (30)  

It is shown in Fig. (5c) that the measured effective density (circles) 
indeed follows exponential spatial dependence. The black lines are the 
results predicted by EMT [see Eq. (27)]. We also fitted the measured real 
and imaginary parts of effective density by using exponential functions 
(purple and blue lines), which agree well with those by EMT. The above 
characterization experiment demonstrates the effectiveness of our 
design scheme. 

7.4. Meta-layer preparation 

To combine the individual fabricated perforated plates, we also 
printed two corresponding shell covers. The interior of the covers has 
designed grooves located at xn for the installation of perforated plates. 
We used acoustic Plasticine to seal possible gaps and assembled all 
components to form the overall meta-layer. The bottom of the meta- 
layer is a hard wall [corresponding to the top of Fig. (5a)], and the 
incident port of the sound wave is the bottom of Fig. (5a). The diameter 

of the internal cavity of the sample is 2 cm, which is aligned with the 
inner diameter of the circular impedance tube. The corresponding cut- 
off frequency of the impedance tube is 10057 Hz, which is enough to 
cover the range up to 10000 Hz, the upper limit of our measurement. To 
assemble the individual perforated plates, we printed two corresponding 
shell covers with designed grooves located at xn. We used acoustic ad
hesive to seal possible gaps and assembled all components to form the 
overall meta-layer. The bottom of the meta-layer corresponds to the top 
of Fig. (5a), and the incident port of the sound wave is at the bottom of 
Fig. (5a). 

7.5. Reflection measurement 

For the measurement of reflection, we used two-microphone method 
to evaluate the anti-reflection performance of the meta-layer. To cover 
such a broadband range, our experiments were carried out in two rounds 
(implementation details and equipment specifications available in 
Supplementary Materials, Section S7). The experimental results show 
that the meta-layer possesses the low reflection of less than 10% from 

420 Hz to 10000 Hz. Within this range, the averaged reflection 
∫ f2

f1 

|S11(f)|2
(f2 − f1) df = 0.86%, where f1 = 420 Hz and f2 = 10000 Hz. The reflection 
tends to zero as the frequency increases, which is consistent with our 
theoretical predictions [as shown in Fig. (5d) comparing the theoretical 
(red line) and experimental (red circles) data]. This low reflection is 
corresponding to a high average absorption coefficient of 99.14%. The 
theoretical results presented here used dimensional frequency as the 
horizontal axis, which are actually the same data from Fig. (4e). Because 
the end of the sample we designed is a hard wall, all incident energy 
except for the reflection will be absorbed. Compared with other 
competitive acoustic absorber/anti-reflection coatings, e.g., porous 
materials [44], absorbing metamaterials [45–47], our meta-layer has 
the largest relative bandwidth, i.e., Bw = 2(f2 − f1)/(f2 + f1) = 1.84, close 
to its upper limit 2. 

Fig. 5. (a) The photo of the fabricated sample, with its cover removed for better illustration. The pore spacing is larger as the label n of φn increases. (b) The porosity 
distribution generated by the proposed design scheme. The inset depicts the front view of the perforated plate. (c) The measured effective density of individual unit 
cells at 1000 Hz, plotted as function of their location xn. In addition, the obtained fitting function is (1 + 0.04i) exp(19.4 [m− 1]x). The inset is the side view of a unit 
cell. (d) The measured reflection of the overall assembled sample. The gray region from 420 Hz to 10000 Hz is determined by 10% reflection (or 90% absorption) as 
the threshold. Theoretical MTMM-based results are taken from Eq. (14) and Eq. (26), respectively. The inset is an enlarged view of the low frequency band. 
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8. Concluding remarks 

Thus far, our results have shown an efficient and easily implement
able way to achieve an EM-based anti-reflection meta-layer by manip
ulating the structure of multi-layer perforated plates. Other examples 
suitable for demonstrating more general acoustic EMs include temper
ature gradient pipes [48,49] and solid-fluid composites [50–52]. We 
distinguish our work with acoustic black holes [46,53,54], due to the use 
of ideal reflectionless eigenmodes inside EMs. The precise design of the 
dissipation and exponential non-uniformity is also unique for the final 
excellent anti-reflection performance. Furthermore, our acoustic theory 
can be easily extended to the case of electromagnetic waves by the 
following mapping 
{

ρ→ϵ
K→μ− 1 , (31)  

where ϵ, μ are the permittivity and permeability, respectively. The 
detailed derivations for the electromagnetic extension are available in 
the Supplementary Materials, Section S8. Hence, the proposed MTMM- 
based design scheme, together with the excellent anti-reflection effect of 
EM, can have even broader impacts in microwave and optical meta
materials [9,55,56]. 

This article focuses on one-dimensional exponential material prop
erties. Other types of functions, such as Pöschl–Teller function (sech2 

type) [57,58] and power series [48,59] were also examined. Addition
ally, Ref. [60] proposed a variational approach to yield optimal 
impedance profiles, and Ref. [61] systematically investigated the fre
quencies where waves can go around an obstacle. It was also emphasized 
in Refs. [62–64] that infinite number of solvable impedance profiles can 
be found with the aid of Liouville and Darboux transformation. How
ever, achieving broadband anti-reflection even for one-dimensional 
problems is not easy. Universal broadband impedance matching 
design were proposed in Refs. [35,65]. Furthermore, Refs. [66,67] 
demonstrated that if real and imaginary parts of the material parameters 
are associated by a spatial Kramer-Kronig relation, omnidirectional 
anti-reflection effects can be ensured with only passive components. For 
cases beyond one dimension, more general theories on reflectionless 
modes can include aspects in multi-mode problems [68,69], reciprocity 
constraints [70], and disordered media [20,71,72]. The development of 
transformation acoustics/optics [24,73] can also be referenced for 2D 
and even 3D cases. However, achieving broadband effective properties 
in experiments is often challenging, and the required material properties 
can be anisotropic [24]. 

In conclusion, by taking advantage of the specific case of EMs, our 
work provides a foundational complement to previous studies from the 
analytical perspective. Under the condition of one-dimensional expo
nential material properties, we utilize generalized plane-wave eigen
modes as an effective theoretical analysis tool, to enhance our 
understanding of the impedance matching mechanism of traditional 
gradient materials. Simultaneously, we simplify the design procedure 
with the updated model, achieving unprecedented broadband anti- 
reflection performance. Looking ahead, EM can also be integrated as a 
key component into other anti-reflection devices. We expect that our 
acoustic-EM-based theoretical and experimental research paradigm can 
be extended to higher dimensions and other wave systems to generate 
profound impacts. 
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